Form Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response. including the time for reviewing instructions. searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway,

Suite 1204, Arlington, VA 22202-4302, and to the Office of M: and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
. ot Sep ©
June 13,2003 Final Report, Q812243 as f<o 073
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Advanced Broadband Intrusion Detection Engine (ABIDE): Report on Seedling DAAD19-02-1-0404
Project
6. AUTHOR(S)
Jonathan Smith, Michael Greenwald, E Lewis, Honghui Lu
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Pennsylvania, Dept. of Comp. & Info Science, 3330 Walnut St., REPORT NUMBER
Philadelphia, PA 19104
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
U. S. Army Research Office 6
P.O. Box 12211
Research Triangle Park, NC 27709-2211 q L{ 9\ 6 5 \ C
e) Lo ‘

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12'b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

ABIDE, the "Advanced Broadband Intrusion Detection Engine", is a model for applying parallel processing to the increasing
bandwidths present in optical fibers in a manner which will scale with increases in the number of lambdas in a WDM

scheme. Our initial support from ARO was used to investigate design parameters, and we report a scheme that we believe will
in fact allow sophisticated intrusion detection to operate on the entirety of a fiber's bandwidth. The design principle we
employ is novel, consisting of alternating bands of filtering and aggregation functions organized into a virtual tree, which

is then mapped to the underlying ABIDE hardware system. The aggregation/filtering adjacencies allow localized

tuning at the boundary. For example, if an upstream filtering system is overwhelmed, predecessor (downstream) aggregation
functions must get backpressure to decrease the number of streams

merged. We call this scheme Filtering Aggregation Bands (FAB).

We are prepared to continue this research and perform a more detailed experimental investigation for ARO along the lines of
our original proposal.

14. SUBJECT TERMS 15. NUMBER OF PAGES
12

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18
298-102

Enclosure |

Advanced Broadband Intrusion Detection Engine (ABIDE)
Report on Seedling Project

abide (def.: to wait patiently for; to endure)

Jonathan Smith, Michael Greenwald, E.C. Lewis, and Honghui Lu
June 13, 2003

Abstract

Executive Summary

ABIDE, the ” Advanced Broadband Intrusion Detection Engine”, is a model for applying parallel
processing to the increasing bandwidths present in optical fibers in a manner which will scale with
increases in the number of lambdas in a WDM scheme. Our initial support from ARO was used to
investigate design parameters, and we report a scheme that we believe will in fact allow sophisticated
intrusion detection to operate on the entirety of a fiber’s bandwidth. The design principle we employ is
novel, consisting of alternating bands of filtering and aggregation functions organized into a virtual tree,
which is then mapped to the underlying ABIDE hardware system. The aggregation /filtering adjacencies
allow localized tuning at the boundary. For example, if an upstream filtering system is overwhelmed,
predecessor (downstream) aggregation functions must get backpressure to decrease the number of streams
merged. We call this scheme Filtering Aggregation Bands (FAB).

We are prepared to continue this research and perform a more detailed experimental investigation for
ARO along the lines of our original proposal.

1 Introduction

It is commonly (and incorrectly) believed that intrusion detection cannot be performed in the core of modern
broadband networks. Our long term goal, the construction of the network-embedded Advanced Broadband
Intrusion Detection Engine (ABIDE) will demonstrate the capability for network-embedded programmability,
specifically for intrusion detection and monitoring for wavelength-division multiplexed (WDM) [1] broadband
optical networks. This ultimate version of ABIDE would use network processors such as the Intel IXP1200
or IXP2800 interconnected in a tree to achieve the highest performance. The proposed architecture however,
raises many technical questions, as it relies on a complex synthesis of advanced hardware and novel software.

We set out to investigate a key technical question in building a scalable broadband intrusion detection
engine, namely, how to manage the concurrent collection of data from multiple sensing points. Our initial
approach was to study this question by building a small prototype system in software, using conventional
cluster-based distributed computing. Our team’s earlier experiences building a distributed firewall suggest
that scalable security systems can be constructed by careful localization of decision making. In intrusion
detection, we believe that a combination of distributed sensors under control of a common policy, and an
intelligent fusion of data from these sensor systems, can lead to scalable intrusion detection systems.

This document reports on our preliminary work to address this question, in a project launched using
seedling funds from the ARO. The most basic observation that arose from our analysis was that, while
we still believe that a scalable IDS engine is achievable, a single, static, configuration must either be over-
provisioned (and expensive) or else provide incomplete coverage. Therefore, we need a more sophisticated
architecture than we first envisioned. In particular, we have (i) identified several new fundamental research
questions related to using parallel computing for scalable network surveillance, and (ii) proposed a new
architecture (FAB: Filtering Aggregation Bands) to address these issues.

We believe that the new issues we raise will affect all such parallel efforts to achieve scalable network
surveillance, and will require any such effort to attack the problem of dynamic reconfigurability.

The rest of this document reviews the problem space we are investigating, reviews our initial proposal,
summarizes both the new technical questions we have uncovered and our proposed architecture to address
them, and briefly discusses other comparable research.

2 Broadband network challenges — computing, communications
and performance

In this section, we outline the challenges of broadband intrusion detection. First is the raw bandwidth of
the networks, and second is the nature of the intrusion detection task itself.

2.1 The Challenge of Fiber Optic Communications

The merging of computing and communication [3] has had positive consequences for both fields, with net-
works enhancing the capability of computing systems and vice versa. Significant leverage has been gained
from the common use of electronics in both domains, as well as the ability to deploy processing coupled to the
networking devices in advanced networked systems. For example, the entire ” World Wide Web” architecture
is predicated upon sets of services accessible via URLs; these services are provided by services co- located
with large-scale network infrastructures provided by ISPs.

The many advantages of fiber-optic systems have made them the transport medium of choice for advanced
communications systems, such as those deployed at the core of backbone networks [1]. Transparent all-optical
systems achieve the greatest advantage from the technology, particularly in the form of wavelength-division
multiplexed transport systems [5]. A major challenge to system architects is the coupling of processing
to optical systems with total throughputs (bandwidth*wavelengths) in the terabit/second regime. With
limited bus bandwidths (e.g., PCI at ca. 2Gbps) and DRAM bandwidths (ca. 1Gbps on P6, but larger on
many other architectures), conventional approaches to constructing an Optical Supervisory Channel (OSC)
processor will result in limited performance and functionality relative to the capabilities of the transport
system.

A novel architectural solution to matching core network bandwidths to processing for tasks such as
intrusion detection (discussed in the next section) is needed. Since we are interested in WDM networks,
we must multiply the serial throughputs by factors currently ranging from 16 to 80 or more. With many
advanced IP services and active networking [4], there is a strong pressure for increased performance and
flexibility in an OSC processor. We believe that novel architectural ideas can help us crack the boundaries
in the network and processor architecture communities.

2.2 What is Intrusion Detection and why is it hard to scale?

Intrusion detection is based on pattern matching of packets, either singly or in series. An excellent short
reference is Paxson’s paper on the Bro intrusion detection system [8]. A more comprehensive introduction
to work done before 2000 on Intrusion Detection systems is available from the CMU Software Engineering
Institute [13]. The task performed by an intrusion detection system (IDS) is to search for specified sets of
patterns on a monitored link. These systems are deployed on broadcast LANs or as "bumps” in a path on
which data are to be monitored. When an IDS detects a pattern associated with an intrusion (an attack
signature), it generates an alert message which is sent to a specified destination, either local or remote.

While firewalls tend to limit their interest to packet headers, so that firewall rules incur a per-packet
cost proportional to the cost of a rule, intrusion detection systems look at both packet headers and packet
bodies. This means three challenges ensue. First, the complexity of the patterns being searched for imposes
a major computational burden on the processing capacity of the intrusion detection machine. Second, since
the intrusion detection system looks at packet bodies as well as packet headers, the per-packet cost is a
function of the size of the packet as well as the complexity of the rules. Third, since the bandwidth of
the network infrastructures is increasing, this means that the real performance challenge is a bandwidth *
rule complexity product. This is particularly true when the network infrastructure is DWDM, as the total
bandwidth, as we have discussed above, is a function of the number of wavelengths and the capacity of each
wavelength.

POTS/ISDN

Figure 1: Tradeoffs in Network Intrusion Detection Systems

2.3 This problem exceeds the capacity of a single computer

The bandwidths and processing capacity available from even the fastest modern processors cannot keep
up with the network infrastructure. Essentially, what would be required is a capacity to perform string
matching on each wavelength at its line rate (these are now ca. 10 billion bits per second, a capacity beyond
the memory performance of workstations).

Thus we must look at parallel solutions. The key questions will be the data gathering and fusion archi-
tecture. In the next section, we examine a solution to ABIDE using special purpose processors. This will
set the stage for the research questions we have begun to address with our initial investigation and which
we hope to pursue in our prototype ABIDE system, based on interconnection patterns overlaid on a cluster
of conventional computers. We believe this effort will tell us if a full-scale ABIDE is possible, and where its
use will be sensible.

3 Approach

3.1 The ABIDE Approach using special purpose network processors

ABIDE couples active networking[4], an approach to programmable network elements, to high-performance
parallel computing. Programmability allows insertion of intrusion detection algorithms (developed by others,
and adapted to ABIDE) deep into the network core. The basic principle is use of add-drop demultiplexers
(ADMs) with outputs routed into a tree-structured single-instruction multiple data (SIMD) architecture
parallel processor. The processor is structured as a tree, with Intel IXP1200 (eventually IXP2800) network
processors near the leaf nodes, feeding more general-purpose machines higher up in the tree. ABIDE exploits

ABIDE Binary fiber
Tree fitses streams

ABIDE

Streams from fiber

Figure 2: ABIDE Architecture and Deployment

the large body of federally-supported work in massively parallel machines (such as DADO[7] and Non-VON)
in the 1980s, to provide functions explored in the 1990s in active networking research, to solve critical
infrastructure problems for the 2000s and beyond.

3.2 The ABIDE System Architecture

Parallel architectures. such as the binary tree (each processor has two children, which recursively have
children) are highly scalable and can easily be coupled to a WDM system.

ABIDE processing elements would be deployed adjacent to a wavelength selective optical crossconnect
(OXC) node[1] supporting an Optical Supervisory Channel (OSC). Demultiplexed streams from the fiber are
delivered to ABIDE. ABIDE processes all (or selected channels) from the fiber. Any wavelength is a candidate
for processing, although ABIDE will typically designate selected channels (the focus of intrusion detection
or surveillance) for control and processing, while other channels pass through unprocessed. Selection is
performed with a wavelength add-drop multiplexor / wavelength converter.

Intrusion detection and surveillance applications of ABIDE will take advantage of both network-embedded
processing and the tree machine’s ”impedance-matching” between processing performance and network ca-
pacity. Sorting, searching and selection have probably consumed more processor cycles than any other
application. ABIDE would allow line rate comparisons and selection of bitstreams from one or more wave-
lengths (depending on ABIDE performance and the application processing burden of the task).

Leaf processors in the tree frame process packets taken from the network. The packet format demarcates
which bits are used for control and which for transport. This structure is used, e.g., in the IP architecture,
which makes the packet header the locus of control, so that header manipulations can be localized, and result
in per-packet overheads that do not induce large per-byte overheads). Control operations, since they are
localized, can take longer as they are shared across the larger number of data bytes in the packet. Intrusion
detection, as we saw above, must look at bodies as well as headers, so it cannot take advantage of the packet
structure to increase performance, as can routers and firewalls.

4 Research Questions in the ABIDE Architecture

ABIDE can make a large difference in the monitoring and control of the network infrastructure. There are
many challenges in the entire ABIDE research agenda. What we see as hard problems requiring some initial
investigation are the host interconnection strategy and the data fusion paradigm / programming model.

For the long term, Intel IXP1200 network processors would be ideal front ends. However, a set of
Pentiums configured as a cluster can provide insight into how to interconnect a parallel intrusion detection
or general-purpose surveillance system.

The cluster would consist of Intel processors interconnected by Gigabit Ethernet LAN technology. The
interconnection technology would constrain data flow along any particular link. A logical edge would be

Network
Processors

Figure 3: An idealized parallel optical scan engine

defined from a subset of cluster processors, and then traffic traces would be pushed against this edge, as if
data was being derived from a multiplicity of wavelengths of a WDM fiber. The leaves will perform the base
intrusion detection functions of pattern matching, and when they detect a pattern of interest, indicating a
possible intrusion, they indicate an exception to the ”parent” node in the topology. Our intention is to use
either Bro or snort as the prototype intrusion detection system, operating on OpenBSD or Linux cluster
nodes. The outputs from these systems will be forwarded ”up” the tree structure towards the management
station at the root of the tree.

Snort, for example, relies on the popular UNIX pcap packet capture library. The packet capture is used
to feed packets to the snort packet processing logic. This logic begins with a rule chain of zero or more
preprocessors which might edit or use state - such as the location in a higher level object such as a message
- to prepare the packet for processing by one of the three rule trees that snort provides. The rule trees
exist for dropping, passing and logging packets, which are the essential operations in an intrusion detection
system. Real-time alerts can be sent via the syslog() call, or if it is in use, via the Samba system. Back-end
tools can process the syslog entries and filter them for forwarding up the ABIDE tree. Snort rules take the
form:

alert tcp any any -> 192.168.1.0/24 111 (content:"00 01 86 a5|";msg: "mountd access";)

These rules are powerful and have been used in many applications. Many details can be found at:
http://www.dpo.uab.edu/ andrewb/snort/snortdoc/snort.html. Wenke Lee and his group at Georgia
Tech have ported Snort rules to the Intel IXP processors [14], thus demonstrating feasibility!, and allowing
us to leverage off of existing technology.

The precise mapping of either Snort or Bro rules to ABIDE is still a matter of research. Two basic
approaches seem feasible.

IThat effort (AIDE) aims at achieving scalability by pushing processing to end-hosts and doing very little in the core of the
network. ABIDE takes a diametrically opposed view, aiming to do very little at the end-host and doing most of the work at
the core of the network, where more traffic is aggregated.

First, each leaf node can inspect a single packet. Assume that running a packet against the pattern
matcher takes up to K times as long as the transmission time for that packet. Then, a system with K x C'
leaf nodes should be able to monitor C' channels in real-time. We assume that most packets are benign and
will not trigger alarms, so that we achieve reasonable data reduction as we go up the tree to the root(s).

Alternatively, assume that each leaf node is responsible for a single rule?. The system must comprise
enough leaf nodes to cover every rule for every channel being monitored, and therefore the system is as
scalable as the first approach.

Intrusion detection systems, such as Snort, deal with stateful filters (e.g. multi-packet patterns that
indicate possible intrusion such as port-scanning). Under the packet-per- node architecture such patterns
can be detected by keeping state at the leaf nodes, in a manner similar to the current architecture of Snort.
Under the rule-per-node architecture, general purpose nodes higher in the tree must detect such situations by
detecting that multiple primitive patterns have been detected in a short amount of time or in an interesting
sequence.

We can learn a great deal about building a scalable parallel intrusion detection system from experiments
done on a commodity rack of machines. First, we can estimate the degree to which the rules cause data
reduction. Our belief is that significant data reductions almost always take place from the leaves to the
first parent. A key question is whether the fusion occurring when the tree is more than a single level deep
will actually cause significant expansion in the data throughput required as data move up the tree. If this
expansion occurs, then a simplistic approach is impossible, as it will be limited by the bandwidth into the
root. However, if data reduction can be achieved (e.g., by placing filtering rules or compression at the data
fusion locations) then the system can be scaled with an appropriate number of processors.

The (expected) data reduction may turn out to be sensitive to the choice of packet-per- node or rule-per-
node. A related question we can address experimentally is whether the degree of data reduction at each level
of the tree is specifically related to the structure of Snort or Bro rules. One can conjecture that more effective
data reduction comes at a higher computational cost. If so, perhaps the system will scale better with weaker
data reduction at the leaves (reducing the number of leaf nodes needed to keep up with a channel), but with
additional data reduction occurring higher in the tree (on cheaper commodity processors). In the extreme
case, perhaps forms of rules that differ from Snort or Bro are more appropriate to our tree architecture —
can we structure intrusion detection rules to balance the filtering load more evenly over different levels of
the hierarchy?

This leads to the second experimental result. When we measure the absolute bandwidths each leaf node
and internal node can handle, we can determine what depth and branching factor in the tree are suitable
for this task (it may turn out that filtering effects are so dramatic that each internal node can handle 5-10
leaves, which is very attractive from a cost perspective).

A third experimental result, based on the traffic, and its variance with respect to data reductions from
filtering, we can decide how much extra capacity is necessary in the system for performance guarantees. For
example, users may want to guarantee that at most 10% of packets are lost, at most 0.1% of packets are
lost, or that no packets are lost. With appropriate variance estimates we can appropriately overbuild the
system to meet user expectations.

Finally, since our system will be a working distributed intrusion detection system, experiments regarding
the use of the system with different network configurations can be performed. While the system was inspired
from a task which suggests a Single-Instruction Multiple Data (SIMD) style of parallelism (where a single
rule set is applied uniformly across a multiplicity of network links), that of monitoring a multiple wavelength
fiber network, other uses are clearly possible without much creativity. For example, independent elements
of the rule set could be distributed across a multiplicity of ABIDE nodes, allowing load balancing across
systems with very computationally-intensive rule sets. Since the results are fused, the management station
gets to exploit the parallelism in this fashion as well.

2In point of fact, each node can be responsible for as many rules as can be processed during the transmission time of a single
packet. A single rule per leaf node is the worst case — if ABIDE can handle a single rule per node, then it can handle more
realistic situations.

5 Preliminary Observations

(draft)

There are two basic goals of applying parallel processing to network surveillance for intrusion detection.
First, we want to handle a large amount of data in a short amount of time — multiple processors may be
able to handle loads that individual processors cannot handle. Second, we want the monitoring facility to
scale easily with the growth of network bandwidth — a viable design should permit an increase in capacity
by adding processors in proportion to the increase in monitored traffic per second.

If each packet could be treated completely independently then it would be trivial to implement a fully
scalable parallel monitoring system. As noted earlier, if a single processor can handle a packet (check the
packet against all rules) in K times the transmission time of a single packet, then we can simultaneously
monitor C' channels by using C' x K processors, and let each processor handle only every Kth packet on a
given channel.

However, intrusion detection cannot treat each packet independently. First, many rules refer to recent
network traffic history in order to decide whether an anomolous or dangerous event must be flagged. Second,
many rules refer to messages or streams that are comprised of multiple packets. It is impossible, in general,
to know which processor need handle a given packet until the packet has been classified. Therefore, in order
to handle a given packet, the required state and the packet contents must somehow migrate towards each
other.

This is true at all levels of abstraction — we cannot know which processor has the state to handle a given
message (for example, it may belong to some higher level flow) until the packets have been combined into a
message and the message classified.

One can choose to maintain consistent shared state across many of the processors, updating the shared
state every time a relevant event occurs on any processor. Alternatively, one can keep state (other than
classification state) local to a single processor (or a very small number of processors) and forward packets
and events up the tree-like graph to get to the desired processor.

We believe that the latter architecture will be significantly more scalable than the former, reducing the
costs of inter-processor communication. Our basic architectural aim is to spread the packet processing load
across as many processors as possible, but breaking up or combining rules to keep a balanced load across all
processors, and to localize state as much as possible.

There are topological and algorithmic questions we must answer, however, in order to make this archi-
tecture viable. The topological questions are essentially static: First, what is the logical topology that will
maximize both load sharing and throughput. Second, what is the underlying physical topology that best
supports reconfiguration of the logical topologies. The algorithmic questions are dynamic: First, for a given
(changing) load, how do we choose the right virtual topology to embed in the physical topology? Second,
the topology is chosen based on history; however, there are likely to be intervals where the load overwhelms
the intrusion detection engine — how do we deal with overload?

5.1 Logical topology

We logically organize the processors into a network called the FAB fabric. The FAB fabric is a tree-like
network of general purpose processors terminating at a root node that acts as a management and reporting
station. We divide the nodes in the network into bands. Bands closer to the root deal with events at a higher
level of abstraction than nodes in bands farther from the root. Bands farther from the root deal with larger
quantities of (aggregate) raw data. Data enters the network through network processors directly connected
to leaves in the network graph. Each band filters events from lower bands, aggregates the unfiltered events
into more abstract (higher level) events, and passes the more abstract event to the appropriate parent in the
next band.

The topology of the FAB, and the allocation of the number of processors per rule (or rules per processor)
depends on the set of rules we are using, and the recent history of packet traffic.

We start at the lowest band, consisting of network processors directly extracting packets from the optical
fiber. If a single processor can handle a packet (check the packet against all local, first level, rules) in K
times the transmission time of a single packet, then we can simultaneously monitor C' channels by using
C x K processors, and let each processor handle only every Kth packet on a given channel. But this is a

A Network processor (Root) Management and reporting station

A
D Processor
b

Channel Channel Channel

Figure 4: Virtual topology for FAB parallel optical scan engine, showing breakdown by channel into leaf
nodes, and showing both fan-in (from data reduction) and fan-out (from aggregation) going up the tree.

minimum. We require that the next band in the FAB pipeline should be emptied before the packets from
the leaves are passed up. This may require more than C' x K leaf processors, if we need the per-band latency
to be larger than K. Although the FAB in general will be reconfigurable, the leaves themselves are special
purpose network processors, so we will probably have to overprovision the lowest (leaf) band.

Generally there are fewer nodes in band N than in band N + 1. The root node is at band 0. All nodes in
band N are parents of every child in band N + 1. In other words, a node in band N communicates directly
with all nodes in band N + 1 (its children) and all nodes in band N — 1 (its parents), but with no other
nodes.

Figure 4 shows the virtual topology of the FAB network.

It is a goal of the logical topology to ensure that, on average, the latency of every band should be equal
to the latency of the band of leaf nodes. There is a competing goal, namely, that we have the fewest possible
total number of bands in order to reduce the total latency. We monitor the behavior of the processors in
order to dynamically reconfigure the virtual topology to reach these goals. The basic questions are where
we break up each rules (what constitutes the band boundaries)? And, how wide (how many nodes) should
each band be?

Assume a given, trial, topology. If the input queues on a given processor grow long, it means that
processor is overloaded. The solution is straightforward: split the incoming data “stream” (in other words,
change virtual topology by adding a node to the band). On the other hand, if the output queue grows long,
it means that the communication channel overloaded (change physical embedding).

We will discuss the physical embedding in the next section, but for now, note that in general, pack-
ets/events are routed to the parent that has the appropriate state stored locally. So, although, every node
in band N is a parent of every node in band N + 1, in practice certain pairs of nodes are more likely to
communicate — a fact we can take advantage of when we embed the logical topology into our physical FAB
fabric.

If band N is already as wide as band N + 1 and input queues are still overloaded, then the latency in
band N + 1 is too high, so the solution is to split it into two bands. Such a split is accomplished by reducing
the number of rules in each processor in the band (and if only 1 rule, then splitting that rule into sub-rules).
The embedding of the reconfiguration has an interesting property at this band boundary: we can then layout

Figure 5: Physical topology with virtual overlay.

this band with expected communication to only one parent.

At each band, we filter the incoming events. Those that trigger no rules are dropped. Those that trigger
rules are aggregated into higher level events. Both filtering and aggregation can reduce the volume of data
as we proceed through one more band towards the root.

5.2 Physical topology

The basic goal of the physical architecture is to support the dynamic reconfiguration of the communication
paths between the nodes to support the desired virtual topology. In other words, we want to be able to
embed the virtual topology in a given physical architecture. What physical topology is most suitable?

As discussed earlier, the desired virtual topology is a directed graph with a single root. The non-root
nodes are formed into bands, such that every node in band N is a child of every node in band N+!. Therefore,
no connection is needed between nodes in bands that are more than one apart. Similarly, peers (nodes in
the same band) don’t need to communicate. However, the need to communicate with all parents and all
children, may sometimes require communication with peers in order to orward/pass-through data to reach
a specific parent that is not directly connected.

To implement this virtual topology we choose to embed it into a specific, extensible, physical topology.
The physical FAB fabric consists of nodes connected in clusters. Each general purpose processor is connected
to a gigabet ethernet control plane that serves solely as a channel to control reconfiguration. In addition,
each processor belongs to two clusters. Each cluster consists of nodes allocated to bands N and N + 1, with
(on average) a slightly larger number of nodes from N. In one cluster the processor is a child, and belongs to
the lower band. In the other cluster, the processor is a parent, and belongs to the higher band. The clusters
are 15 Gbps interconnects.

Naturally, each node is only directly connected to a few parents and a few children. The embedding can
either choose to connect more parents directly, by building a communication tree: with a branching factor
of b, it would take at most log,(CK) levels to allow complete interconnection between children and parents
in the widest layer. Alternatively, if a node in band n needs to send an event to a node in band n + 1 that
is not directly connected, it can choose to send it to any other node in band n or n + 1, and recurse.

In general, we expect to be able to embed the vrtual topology in such a way that most communication is
direct. The one exception is the interconnect between the leaf band and the first level of general processors.
Allocation of packets to network processors (leaf nodes) is random. Each network processor gets the Kth
packet from its channel, so it is impossible, in general, to predict which leaf node will need to speak to which
parent. Assignment is random (based on the packet order on the fiber).

We expect the routing layer between the leaves and the next level to be the most complicated in the
graph.

We can extend the physical fabric by adding a cluster of new processors. We want to embed logical
topologies in the general FAB shape into some physical topology. Our physical topology will generally

mirror the logical topology, but rather than literally being a pyramidal shaped graph, we build it out of
clusters consisting of a few handful of processors. We strive to minimize the network diameter within a
band (minimizing the longest path between peers), and give maximum flexibility in choosing the width and
number of bands. Finally, we can calculate the expect traffic level on each logical link and we want to make
sure that there is enough physical capacity to support the logical link as well as minimize latency on the
larger logical links (so heavily trafficed links should always be one-hop on a local cluster).

We connect to the existing fabric by using heuristics. For example, we look for pairs of clusters that
are doubly interconnected. That is, for each node in the new local cluster find a pair of already existing
local clusters, ¢l and ¢2, such that two or more nodes in ¢l and ¢2 are connected. Break the connection
between one such pair of nodes and use that to splice this node in. We may be able to precisely characterize
properties of a graph that are optimal for our embedding problem.

5.3 Handling heavy load

Our primary method of dealing with load is reconfiguration. However, overload can still occur for two
reasons. First, there is always a delay before dynamic reconfiguration can occur. Second, the choice of
both a logical topology and its embedding into the physical embedding are based on expected mean traffic
patterns. Our expectations may be incorrect, and there may always be sustained bursts of low probability
patterns.

In such cases the only response of the system is to shed load. The way to shed load in systems such as
ABIDE is to drop packets or events. We were surprised to find (although in retrospect perhaps this should
have been more obvious) that the system can be very sensitive to precisely which packets get dropped.
Note that classification must occur after aggregation (it is often impossible to classify an incomplete packet,
message, or flow). This means that a packet loss early in the pipeline does not simply eliminate the packet
itself, but will void any aggregate to which that packet wil subsequently belong. This is analogous to the,
now well known, problem with TCP over ATM identified by Romanow and Floyd [15]. When transmitting
IP packets over ABR ATM, if a single cell is dropped, it is important to drop all subsequent cells from that
packet. Failure to do so can result in the packet loss rate multiplied by a factor of 30! (Cells allowed through
will eventually be useless, and there may be 30 cells in a single packet. If the other cells are not dropped,
then 29 more cells from other packets may need to be dropped. However, if the remaining 15-30 useless cells
are preemptively dropped, then there are 15-30 other cells that may safely get through.)

A similar issue arises in ABIDE. If a single packet is to be dropped, then the rest of the pipeline must be
informed, and all aggregates that this packet may belong to must be dropped, immediately, and all “hanging
state” related to those aggregates can be freed up. Failure to do this can result in the detection engine
showing a precipitous drop in throughput or detection rate any time there is a short term spike in incoming
load.

6 Comparison with other research

At the time of our initial proposal, we were unaware of any other work in the area of transparent optical
networks and other broadband systems that used parallel computing for scalable network surveillance. This
was particularly true in the coupling of parallel hardware and WDM of ABIDE. While we ourselves have
studied distributed firewalls [9], firewalling is a different problem, since the firewalls can act on a common
policy without causing a large data set to be generated for analysis at a common management point.

Bellcore’s Sunshine [12] ATM switch of the early 1990s provided a programmable output port controller
line card which provided network embedded functionality with an Intel 1960 and a substantial cell buffer,
albeit at the level of framed ATM cells. The Bellcore Osiris [11] ATM adapter provided an embedded
Intel 1960 RISC processor to manage various cell processing tasks once ATM cells had been captured and
framed with a SONET framer. These efforts illustrated the requirement for limiting processing to specialized
tasks. MCI’s monitoring and control system for the NSF vBNS (OC12mon) [10] uses an optical tap and
relies heavily on the embedded processor in an ATM host interface to cope with traffic, mainly by selective
filtering; processing performance is not as well-coupled to transport system performance as our IXP1200 leaf
nodes.

10

The DADO tree machine architecture [7] was intended to process many production system rules in
parallel. While the machine was successfully constructed and led to a high-tech startup (Fifth Generation
Computer Systems), the available parallelism in OPS-5 systems did not challenge the scalability of the
DADO architecture. By instead looking at the natural parallelism of WDM systems, we obtain a capability
match between the machine architecture and its surveillance applications.

More recently, the ARO funded the HIDRA work at University of Colorado at Boulder, and at University
of California at Santa Barbara and at Irvine. Their approach bears some striking similarity to our work
with ABIDE/FAB. First, like ABIDE, they partition incoming network traffic to enable parallelization (what
they call traffic scattering, slicing, and reassembly, we call routing, filtering, and aggregation). Second, they
construct a web of sensors and processors to redact the incoming data stream, and analyze it for potential
intrusions and events that need monitoring. Their parallel architecture is extremely similar to a static
version of a single band in the logical FAB topology. (We find this an encouraging sign, that two completely
independent research efforts have come up with strongly similar designs. This is circumstantial evidence
that we are both at a reasonable point in the design space.)

However, there are also significant differences between our two approaches. The primary difference is
where we choose to “tap” into the data network. We choose to place our supervisory channel at points
of high aggregation (for example, tapping multiple wavelength optical fibers at their point of ingress to a
site). HiDRA chooses to tap at all of the end-hosts and use a distributed algorithm to aggregate the data
over the (possibly compromised) network. The advantage of the ABIDE approach is that no complicated
aggregation is needed; all of the necessary data is locally available and is secure even if the local network
is compromised. The advantage of the HIDRA approach is that each tap need only sample at speeds that
are manageable by a single workstation. A second difference is in functionality: we have directly tackled the
problem of dynamic reconfiguration to adapt to load, and have thought about the behavior of the system
when overloaded. In order to achieve good performance (equal latency bands, maximize throughput), the
network topology needs to be tuned to the set of detection rules and the expected pattern of network traffic.
It seems clear that at any point in time, only a small fraction of the rules/sensors will actually serve to
discriminate real attacks, and that the load can vary immensely. ABIDE monitors queue activity and is able
to dynamically reconfigure. More importantly, even before reconfiguration, ABIDE can shed load in a way
that degrades gracefully. Naive load-shedding can result in a sharp drop in performance. HiDRA can deal
with this in two ways: first, by overprovisioning their sensor web, and second by assuming that load is mostly
significant when under virus attack, and coupling HIDRA with a completely separate mechanism to handle
viruses and denial-of-service attacks. A third difference is that ABIDE is easily scalable; we can add clusters
of general purpose processors to the net and the system can dynamically utilize them. HiDRA cannot be
so easily modified; however one can argue that because the HIDRA taps are co-located with end-nodes,
scalability is achieved by the allocation of a new HiDRA tap with each new workstation or other end-node.

Finally, it should be noted that, differences aside, it seems that ABIDE’s dynamic reconfiguration al-
gorithms may be applicable to HIDRA, too. HiDRA is at a more mature stage in development than
ABIDE/FAB. They appear to have a prototype hardware implementation, while ABIDE is still a paper
design with partial simulation. Their lower level architecture may be more realizable than ABIDE’s, and
perhaps the best architecture is some combination of the two. Further experimentation, analysis, and com-
parison is needed.

References

1. M. Maeda, "Management and Control of Transparent Optical Networks”, IEEE JSAC 16(7), September
1998, pp-1008-1023.

2. J. Smith, I. Hadzic, W. Marcus, ” ACTIVE Interconnects”, Proc. IEEE Hot Interconnects, August
1998, pp.159-173.

3. D. J. Farber and P. Baran, "The Convergence of Computing and Telecommunications Systems”,
SCIENCE, Special issue on Electronics, vol. 195, pp.1166-1170, 1977.

4. J. Smith, K. Calvert, S. Murphy, H. Orman, L. Peterson, ” Activating Networks”, IEEE Computer
37(4), April 1999.

11

5. John M. Senior, Michael R. Handley and Mark S. Leeson, ”Developments in Wavelength Division
Multiple Access Networking”, IEEE Communications Magazine 36(12), December 1998, pp. 28-38.

6. C. B. S. Traw, ” Applying Architectural Parallelism in High Performance Network Subsystems,” Ph.D.
Thesis, University of Pennsylvania, 1995.

7. D. Miranker and S. Stolfo, ”"DADO: A Tree-Structured Architecture for Artificial Intelligence Com-
putation,” in Annual Reviews of Computer Science, Vol. I, 1986, Kaufmann, pp. 1-18.

8. V. Paxson, ”Bro: A System for Detecting Network Intruders in Real-Time”, Research Report LBNL-
41197, Lawrence Berkeley National Laboratory, 1998.

9. S. Ioannidis, A. Keromytis, S. Bellovin, J. Smith, ”Implementing a Distributed Firewall,” Proc. ACM
CCS, Athens, GR, 2000, pp. 190-199.

10. http://www.nlanr.net

11. B. S. Davie, ”The Architecture and Implementation of a High-Speed Host Interface”, IEEE JSAC,
11(2), Feb. 1993, pp. 228-239.

12. J. Giacopelli, J. Hickey, W. Marcus, W. D. Sincoskie, M. Littlewood, ”Sunshine: A High-Performance
Self-Routing Broadband Packet Switch Architecture”, IEEE JSAC, 9(8), October 1991, pp. 1289-1298.

13. J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, E. Stoner. ”State of the Practice of Intru-
sion Detection Technologies”, CMU Software Engineering Institute Technical Report CMU/SEI-99-TR-028,
January 2000.

14. W. Lee, D. Contis, J. Cabrera, D. Schimmel, A. Thomas, N. Balwalli, C. Clark, and W. Shi, “Toward
High-Speed and High-Fidelity Intrusion Detection”, Technical Report, College of Computing and School of
Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, GA

15. A. Romanow and S. Floyd, “Dynamics of TCP Traffic over ATM Networks”, IEEE Journal on
Selected Areas in Communications”, 13(4), pp. 633-641, May, 1995.

12

